1. COMMUTATIVE ALGEBRA AND HOMOLOGICAL METHODS

Methods of Homological Algebra are used to characterize modules
and rings with good properties in the sense that the notions of maxi-
mum number of regular elements and minimum number of parameters
coincide. In this section we follow the presentation in [6]. Also for a
development of the theory of sheaves we refer to [3] as well as [4] for
the Algebraic Geometry.

1.1. Depth and Cohen-Macaulay rings. Let X be a topological
space, F an abelian sheaf on X and Z a locally closed part of X. Let’s
choose a decomposition Z = X N U, where U C X is open and let’s
put

[z(F)={sel'(UF):supp(s) C Z}.
The definition does not depend on the choice of the open U, because if
U’ C U is another open set, the map ¢ : I'z(F) — I',(F) induced by
the restriction map I'(U, F) — I'(U’, F) is an isomorphism.
The functor I'z(.) is left exact and the category of sheafs has enough
injective so we can construct derived functors.

Definition 1.1. One denotes H5(F) the i-th right derived functor of
'z and we called it the i-th local cohomology group with support in Z.
For a quasi-coherent sheaf F = M on an affine scheme Spec(A) and a
closed subset Z =V (.J), we denote Hy (M) simply by H'(M).

Definition 1.2. Let A be a ring, M an A-module, J an ideal of A.
One calls depth of M in J, denoted depth;(M), the smallest integer
i, such that H5(M) # 0. For a local ring A with mazimal ideal m,
depth,, (M) is simply denoted depth(M).

The notion of depth of a module M over a ring A is very related to
the idea of M-regular elements in A.

Definition 1.3. Let M be a A-module. A sequence fi,..., f, of non-
invertible elements of A is said to be M-reqular if for all i, f; is not a
zero divisor in M/(f1,..., fi-1)M.

Proposition 1.4. Let A be a local ring, m the maximal ideal and M
an A-module of finite type. The following conditions are equivalents:

(1) depth(M) > n.

(2) There exist an M -reqular sequence fi,..., fn of elements in m.

Proof. This is included in Proposition 1 in Chapter IIT of [6]. We will
like to proceed by induction in n. The statement for n = 1 says that:

HP (M) # 0 < There are not regular elements in m.
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We can characterize HY, (M) = {s € M : In > 1,m"s = 0}. The
absence of regular elements in m forces m C Upcass(an)p- Because M is
of finite type, m has to be inside a finite sum: m C U} ;p; and using
the fact that the p; are primes and the maximality of m we obtain
m = p; = Ann(s) for some s # 0. We have then s € HY (M) # 0. On
the other hand if s € HY (M) # 0 we have m" C Ann(s) and because
m is maximal, m = Ann(s’) for some s’ € M and elements of m will
not be regular.

The induction step: Consider a regular element f € m and the exact
sequence coming from the multiplication map f: M — M,

M—M-—M/fM — 0.
Applying H! (*) and denoting N = M/ fM, we get the exact sequence
0—---— H (M)— H (M) — H' (N)— H¥' (M) — ...
So if (1) = (2) is true for n we will get a short exact sequence:
Hy, (M) — Hj, (M) — Hy, (N) — Hy ™ (M)

and n elements N-regular fo, ..., f,r1 in m. The elements f, fo, ..., fni1
will be n 41 M-regular elements in m and we will have that (1) = (2)
is true for n 4 1. In the other direction if (2) = (1) is true for n and
we have a sequence of M-regular elements fi,..., f,.1, the fact that
fos oy fay1 is N-regular forces H"'(N) = 0 and we have the exact
sequence:
0— H, (M) — H, (M),

where the map f: H (M) — H]' (M) is the multiplication by f. This
map can not be injective for f € m and therefore H)! (M) = 0. O

The depth and the dimension of a module M over a local ring A are
related by the following inequality:

Proposition 1.5. Let A be a noetherian local ring with mazimal ideal
m and M an A-module. Then depth(M) < dim(M).

Proof. This is Proposition 3 in Chapter IIT of [6]. The fact that for
any a € A we have dim(M/aM) > dim(M) — 1 is a consequence of
the Hilbert-Samuel theorem. Regular elements f € A on the other
hand, are parameters in the sense that dim(M/fM) = dim(M) — 1.
To see this, we take a regular element f € A and a chain of prime
divisors p; C py C -+ C pg in Supp(M/fM) defining the dimension d
of M/ fM. Because f is regular it does not belong to the annihilator of
any s € M, in other words, it does not belong to any of the associated
primes in Ass(M). In particular f is not part of any minimal prime in
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Supp(M). But f € p; as chosen before, so p; can not be minimal in
M and there will be a prime py in Supp(M ) with the property

PoCpr CTpPp2C - Cpg
showing that dim(M/fM) < dim(M) — 1. O

Definition 1.6. Let A be a local noetherian ring and M an A-module of
finite type. M is said to be Cohen-Macaulay if depth(M) = dim(M). A
module M of finite type over a (non-necessarily local) ring A is called
Cohen-Macaulay if the localizations M, are all Cohen-Macaulay for
mazimal ideals m of A. A ring is Cohen-Macaulay if it is as a module
over itself.

1.2. Equidimensional rings. The geometric idea of equidimensional
rings is an algebraic form of the notion of varieties all of whose irre-
ducible components have the same dimension.

Definition 1.7. A ring A is called equidimensional if it satisfies the
two conditions:

(1) dim(A) = dim(A,,,) for every maximal ideal m of A and,

(2) dim(A) = dim(A/p) for every minimal prime p of A.
Remark 1.8. A local ring that is Cohen-Macaulay must be equidimen-
sional since it satisfies the relation

height(p) + dim(A/p) = dim(A),

for all prime ideals p C A. The geometric intuition is that the local
ring of a point on an algebraic variety is not Cohen Macaulay if it is in
the intersection of two irreducible components of different dimensions.

2. ALGEBRAIC METHODS AND COMBINATORICS: THE FACE RINGS

Face rings are rings associated to the combinatorics of simplicial
complexes and with applications to the geometry of toric varieties.

Definition 2.1. A is called an abstract (finite) simplicial complex if
A C 2V where V| <oo and FCT € A= F € A.

Definition 2.2. Let A be a (d — 1)-dimensional simplicial complex on
Ver(A) = [n]. Let k be a field. Define S = k[xy,...,x,] and define the
face ideal I in S by I = ([[,c; @i : J C [n],J & A). Then define the
face ring of A over k as k[A] :== S/Ia.

We note that in general, the ideal Ia is generated by the minimal

non-faces of A . So
IA = (H x; : J is a minimal non face of A).

icJ
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Definition 2.3. A simplicial complex A is said Cohen-Macaulay (re-
spectively Equidimensional, Unique factorization domain, Normal) when
the associated face ring has that property.

Example 2.4. (The face ring of the triangle) Let A be the ring A =
k[vi, va,v3)/(v1v9vs). The element X\ = vivgus # 0 is reqular in the
Cohen-Macaulay domain k[vy,ve,vs3]. As a consequence the ring A =
k[v1, va, v3)/(v1v9v3) is also Cohen-Macaulay with depth,,(A) = 2 and
dim(A) = dim(A,,) = 2 for any mazimal ideal m.

Example 2.5. (The ring of the rectangle) In a similar way the ring
A = kfvy,v9,v3,04]/(v103, vovyg) is Cohen-Macaulay with dim(A,,) = 2
and depth,,,(A) = 2 for any mazimal ideal m C A, because the elements
A1 = 103, Ao = Va4 form a reqular sequence:

P(U17U27U37U4>)\1 = Q(U17U27U37U4))\2 = /\2 ’ P<U17U27U3,U4).

Example 2.6. The ring A = klvy,ve,v3]/(v1v9, v9v3) is not equidi-
mensional at m = (vy,ve,v3). The associated variety is the union
of two irreducible components: ¥y = V(vy) with dim(3;) = 2 and
Yo = V(vy,v3) with dim(Xs) = 1. We have the following:

(1) For points x € X \ Xy, dim(A,) = depth,, (A,) = 2.
(2) Forx € ¥y \ X1, dim(A,) = depth,, (A;) = 1.
(3) Forx € ¥y N ¥y, dim(A,) = 2 while depth,, (A;) < 1.

In this case we can exhibit a system of parameters x1 = vi — v3 and
Ty = vo—wg in A. Indeed, A/(z1,72) = k[vs]/(v3) is of dimension zero,
which shows that A is two-dimensional, as it is its mazximal component
21.

The sequence x1,xs is not reqular in A, but we can explicitly find a
reqular element v = v + vy +v3 at the origin Agoo). When passing to
the quotient we get:

A/ (x) = kv, va, v3]/(v109, Vovz, V1 + Vo + v3)
= kfvr, vs]/(v1(v1 + v3), v3(v1 + v3)),

The element vy +vs is killed by v and vz and therefore by the maximal
ideal m = My, vy) of the local ring (A/(x))m. This mazimal ideal m =
Ann(v; + v3) and HY ((A/(x))m) # 0, therefore depth,,(A/(x)) = 0
and depthg o) (A) = 1 while dim(A,0)) = 2.

Example 2.7. The ring A = klvy, va, v3, v4, V5] /(v102, Vov3) is analo-
gous to the previous example, the dimension dim(A,,) = 4 and the
depth depth,,(A,,) = 3 for the ideal m = (vq, v, v3, vy, V).
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Example 2.8. The ring A = kv, va, v3, V4, U]/ (V10203, V30405) is not
Cohen-Macaulay. The irreducible components of the associated alge-
braic variety are, the four-dimensional component 31 =V (v3) and the
three dimensional component Yo = V(vivg,v4v5). The dimension of
the local rings are:

(1) Take m mazimal ideal with (v3) C m but (viva, v4vs) not con-
tained in m, we will have dim(A4,,) = depth,,(A,,) = 4.

(2) For m mazximal ideal with (vive,v4v5) C m but (vs) not con-
tained in m, we will have dim(A,,) = depth,,,(A.,) = 3.

(3) For a mazimal idel m with (vive, v4vs)N(vs) C m, the dimension
dim(A,,) = 4 while depth,,(A,,) < 3.
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