
1. Commutative Algebra and Homological Methods

Methods of Homological Algebra are used to characterize modules
and rings with good properties in the sense that the notions of maxi-
mum number of regular elements and minimum number of parameters
coincide. In this section we follow the presentation in [6]. Also for a
development of the theory of sheaves we refer to [3] as well as [4] for
the Algebraic Geometry.

1.1. Depth and Cohen-Macaulay rings. Let X be a topological
space, F an abelian sheaf on X and Z a locally closed part of X. Let’s
choose a decomposition Z = X ∩ U , where U ⊂ X is open and let’s
put

ΓZ(F) = {s ∈ Γ(U,F) : supp(s) ⊂ Z}.
The definition does not depend on the choice of the open U , because if
U ′ ⊂ U is another open set, the map ϕ : ΓZ(F) → Γ′Z(F) induced by
the restriction map Γ(U,F)→ Γ(U ′,F) is an isomorphism.
The functor ΓZ(.) is left exact and the category of sheafs has enough
injective so we can construct derived functors.

Definition 1.1. One denotes H i
Z(F ) the i-th right derived functor of

ΓZ and we called it the i-th local cohomology group with support in Z.
For a quasi-coherent sheaf F = M̃ on an affine scheme Spec(A) and a
closed subset Z = V (J), we denote H i

Z(M̃) simply by H i
J(M).

Definition 1.2. Let A be a ring, M an A-module, J an ideal of A.
One calls depth of M in J , denoted depthJ(M), the smallest integer
i, such that H i

J(M) 6= 0. For a local ring A with maximal ideal m,
depthm(M) is simply denoted depth(M).

The notion of depth of a module M over a ring A is very related to
the idea of M -regular elements in A.

Definition 1.3. Let M be a A-module. A sequence f1, . . . , fn of non-
invertible elements of A is said to be M-regular if for all i, fi is not a
zero divisor in M/(f1, . . . , fi−1)M .

Proposition 1.4. Let A be a local ring, m the maximal ideal and M
an A-module of finite type. The following conditions are equivalents:

(1) depth(M) ≥ n.
(2) There exist an M-regular sequence f1, . . . , fn of elements in m.

Proof. This is included in Proposition 1 in Chapter III of [6]. We will
like to proceed by induction in n. The statement for n = 1 says that:

H0
m(M) 6= 0⇔ There are not regular elements in m.
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We can characterize H0
m(M) = {s ∈ M : ∃n ≥ 1,mns = 0}. The

absence of regular elements in m forces m ⊂ ∪p∈Ass(M)p. Because M is
of finite type, m has to be inside a finite sum: m ⊂ ∪ni=1pi and using
the fact that the pi are primes and the maximality of m we obtain
m = pi = Ann(s) for some s 6= 0. We have then s ∈ H0

m(M) 6= 0. On
the other hand if s ∈ H0

m(M) 6= 0 we have mn ⊂ Ann(s) and because
m is maximal, m = Ann(s′) for some s′ ∈ M and elements of m will
not be regular.
The induction step: Consider a regular element f ∈ m and the exact
sequence coming from the multiplication map f : M →M ,

M →M →M/fM → 0.

Applying H i
m(∗) and denoting N = M/fM , we get the exact sequence

0→ · · · → H i
m(M)→ H i

m(M)→ H i
m(N)→ H i+1

m (M)→ . . .

So if (1)⇒ (2) is true for n we will get a short exact sequence:

Hn
m(M)→ Hn

m(M)→ Hn
m(N)→ Hn+1

m (M)

and n elementsN -regular f2, . . . , fn+1 inm. The elements f, f2, . . . , fn+1

will be n+ 1 M -regular elements in m and we will have that (1)⇒ (2)
is true for n + 1. In the other direction if (2) ⇒ (1) is true for n and
we have a sequence of M -regular elements f1, . . . , fn+1, the fact that
f2, . . . , fn+1 is N -regular forces Hn−1

m (N) = 0 and we have the exact
sequence:

0→ Hn
m(M)→ Hn

m(M),

where the map f : Hn
m(M)→ Hn

m(M) is the multiplication by f . This
map can not be injective for f ∈ m and therefore Hn

m(M) = 0. �

The depth and the dimension of a module M over a local ring A are
related by the following inequality:

Proposition 1.5. Let A be a noetherian local ring with maximal ideal
m and M an A-module. Then depth(M) ≤ dim(M).

Proof. This is Proposition 3 in Chapter III of [6]. The fact that for
any a ∈ A we have dim(M/aM) ≥ dim(M) − 1 is a consequence of
the Hilbert-Samuel theorem. Regular elements f ∈ A on the other
hand, are parameters in the sense that dim(M/fM) = dim(M) − 1.
To see this, we take a regular element f ∈ A and a chain of prime
divisors p1 ⊂ p2 ⊂ · · · ⊂ pd in Supp(M/fM) defining the dimension d
of M/fM . Because f is regular it does not belong to the annihilator of
any s ∈M , in other words, it does not belong to any of the associated
primes in Ass(M). In particular f is not part of any minimal prime in
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Supp(M). But f ∈ p1 as chosen before, so p1 can not be minimal in
M and there will be a prime p0 in Supp(M) with the property

p0 ⊂ p1 ⊂ p2 ⊂ · · · ⊂ pd

showing that dim(M/fM) ≤ dim(M)− 1. �

Definition 1.6. Let A be a local noetherian ring and M an A-module of
finite type. M is said to be Cohen-Macaulay if depth(M) = dim(M). A
module M of finite type over a (non-necessarily local) ring A is called
Cohen-Macaulay if the localizations Mm are all Cohen-Macaulay for
maximal ideals m of A. A ring is Cohen-Macaulay if it is as a module
over itself.

1.2. Equidimensional rings. The geometric idea of equidimensional
rings is an algebraic form of the notion of varieties all of whose irre-
ducible components have the same dimension.

Definition 1.7. A ring A is called equidimensional if it satisfies the
two conditions:

(1) dim(A) = dim(Am) for every maximal ideal m of A and,
(2) dim(A) = dim(A/p) for every minimal prime p of A.

Remark 1.8. A local ring that is Cohen-Macaulay must be equidimen-
sional since it satisfies the relation

height(p) + dim(A/p) = dim(A),

for all prime ideals p ⊂ A. The geometric intuition is that the local
ring of a point on an algebraic variety is not Cohen Macaulay if it is in
the intersection of two irreducible components of different dimensions.

2. Algebraic Methods and Combinatorics: The Face Rings

Face rings are rings associated to the combinatorics of simplicial
complexes and with applications to the geometry of toric varieties.

Definition 2.1. ∆ is called an abstract (finite) simplicial complex if
∆ ⊂ 2V where |V | <∞ and F ⊂ T ∈ ∆⇒ F ∈ ∆.

Definition 2.2. Let ∆ be a (d− 1)-dimensional simplicial complex on
V er(∆) = [n]. Let k be a field. Define S = k[x1, . . . , xn] and define the
face ideal I in S by I = (

∏
i∈J xi : J ⊂ [n], J /∈ ∆). Then define the

face ring of ∆ over k as k[∆] := S/I∆.

We note that in general, the ideal I∆ is generated by the minimal
non-faces of ∆ . So

I∆ = (
∏
i∈J

xi : J is a minimal non face of ∆).
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Definition 2.3. A simplicial complex ∆ is said Cohen-Macaulay (re-
spectively Equidimensional, Unique factorization domain, Normal) when
the associated face ring has that property.

Example 2.4. (The face ring of the triangle) Let A be the ring A =
k[v1, v2, v3]/(v1v2v3). The element λ = v1v2v3 6= 0 is regular in the
Cohen-Macaulay domain k[v1, v2, v3]. As a consequence the ring A =
k[v1, v2, v3]/(v1v2v3) is also Cohen-Macaulay with depthm(A) = 2 and
dim(A) = dim(Am) = 2 for any maximal ideal m.

Example 2.5. (The ring of the rectangle) In a similar way the ring
A = k[v1, v2, v3, v4]/(v1v3, v2v4) is Cohen-Macaulay with dim(Am) = 2
and depthm(A) = 2 for any maximal ideal m ⊂ A, because the elements
λ1 = v1v3, λ2 = v2v4 form a regular sequence:

P (v1, v2, v3, v4)λ1 = Q(v1, v2, v3, v4)λ2 ⇒ λ2 | P (v1, v2, v3, v4).

Example 2.6. The ring A = k[v1, v2, v3]/(v1v2, v2v3) is not equidi-
mensional at m = (v1, v2, v3). The associated variety is the union
of two irreducible components: Σ1 = V (v2) with dim(Σ1) = 2 and
Σ2 = V (v1, v3) with dim(Σ2) = 1. We have the following:

(1) For points x ∈ Σ1 \ Σ2, dim(Ax) = depthmx
(Ax) = 2.

(2) For x ∈ Σ2 \ Σ1, dim(Ax) = depthmx
(Ax) = 1.

(3) For x ∈ Σ2 ∩ Σ1, dim(Ax) = 2 while depthmx
(Ax) ≤ 1.

In this case we can exhibit a system of parameters x1 = v1 − v3 and
x2 = v2−v3 in A. Indeed, A/(x1, x2) = k[v3]/(v2

3) is of dimension zero,
which shows that A is two-dimensional, as it is its maximal component
Σ1.
The sequence x1, x2 is not regular in A, but we can explicitly find a
regular element x = v1 + v2 + v3 at the origin A(0,0,0). When passing to
the quotient we get:

A/(x) = k[v1, v2, v3]/(v1v2, v2v3, v1 + v2 + v3)

= k[v1, v3]/(v1(v1 + v3), v3(v1 + v3)),

The element v1 + v3 is killed by v1 and v3 and therefore by the maximal
ideal m = m(v1,v3) of the local ring (A/(x))m. This maximal ideal m =
Ann(v1 + v3) and H0

m((A/(x))m) 6= 0, therefore depthm(A/(x)) = 0
and depth(0,0,0)(A) = 1 while dim(A(0,0,0)) = 2.

Example 2.7. The ring A = k[v1, v2, v3, v4, v5]/(v1v2, v2v3) is analo-
gous to the previous example, the dimension dim(Am) = 4 and the
depth depthm(Am) = 3 for the ideal m = (v1, v2, v3, v4, v5).
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Example 2.8. The ring A = k[v1, v2, v3, v4, v5]/(v1v2v3, v3v4v5) is not
Cohen-Macaulay. The irreducible components of the associated alge-
braic variety are, the four-dimensional component Σ1 = V (v3) and the
three dimensional component Σ2 = V (v1v2, v4v5). The dimension of
the local rings are:

(1) Take m maximal ideal with (v3) ⊂ m but (v1v2, v4v5) not con-
tained in m, we will have dim(Am) = depthm(Am) = 4.

(2) For m maximal ideal with (v1v2, v4v5) ⊂ m but (v3) not con-
tained in m, we will have dim(Am) = depthm(Am) = 3.

(3) For a maximal idel m with (v1v2, v4v5)∩(v3) ⊂ m, the dimension
dim(Am) = 4 while depthm(Am) ≤ 3.
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